
Load Balancing in Parallel Network File System
using Adaptive Load Data Migration

Ratan Deokar1 Sagar Hagwane2 Shreenath Iyer3 Vivek Labhade4 Mayur Koli5
Department of Computer Engineering

Pimpri Chinchwad College of Engineering
Savitribai Phule Pune University

Pune, India

Abstract — pNFS aims to increase the performance of
Distributed systems. pNFS, an integral part of NFSv4.1,
Promises to bridge the gap between the performance
requirements of large, parallel applications and their
Interoperability and security requirements. pNFS provides
High-performance data access to large-scale storage Systems
in both LAN and WAN environments. This paper analyses the
problems of load balance caused By data access in parallel file
systems and gives an Accurate way to estimate the load of
data servers using Mathematical formulae. This paper also
analyses ways to Calculate the load on metadata server. The
paper gives a Brief information about adaptive loading data
migration (ALDM) to balance the load of data servers and
parallel NFS (pNFS).

Keywords— Data migration, load balance, load detection,
parallel file system.

I. INTRODUCTION

With the rapid growth of distributed file systems, it has
become essential to handle the ever increasing issue of the
performance of the system with respect to the load. But for
typical parallel file systems, such as PVFS and pNFS, in
which data is striped to multiple data servers, there exists
the cask effect, when some of the data servers load
becomes heavy, the clients response time will increase
greatly, and furthermore the system performance will
decrease. In such cases, it becomes essential to distribute
the load evenly among the data servers and make sure that
the load of the system is balanced.
With the increase in load on different data servers, the
problem of performance degradation, bottleneck and also
the availability of resources arises. There are several
strategies for improving the performance of system
depending on the access of records, prediction etc. This
paper considers load balancing and load (data and
metadata) migration using a trategy called Adaptive Load
Data Migration (ALDM). ALDM strategy focuses on types
of files for their distribution such as hot files, cold files and
warm files. On that basis there are several formulae which
consist of different factors such as disk capacity load, load
and network load.
This paper also gives information about parallel Network
File System (pNFS) which is an advanced version
Of NFS 4.0 created to help reduce the problem of
bottlenecks in the existing file systems. Parallel NFS
(pNFS) is a part of the NFS v4.1 standard that allows
computer clients to access storage devices directly and in
parallel. The pNFS architecture eliminates the scalability

and performance issues associated with NFS servers
deployed today. This is achieved by the separation of data
and metadata, and moving the metadata server out of the
data path. By moving the metadata out of the
data path, the data movement is considerably reduced as the
clients can directly access the data from the block storage.

A. What is pNFS?
The pNFS (parallel NFS) protocol is being standardized as
part of the NFSv4.1 specification to bridge the gap between
current NFS protocols (versions 2, 3, and 4) and parallel
cluster file system interfaces. Current NFS protocols force
clients to access all files on a given file-system volume
from a single server node, which can become a bottleneck
for scalable performance. As a standardized extension to
NFSv4.0, however, pNFS provides clients with scalable
end-to-end performance and the flexibility to interoperate
with a variety of clustered storage service architectures.
The pNFS protocol enables clients to directly access file
data spread over multiple storage servers in parallel. As a
result, each client can leverage the full aggregate
bandwidth of a clustered storage service at the granularity
of an individual file. A standard protocol also improves
manageability of storage client software and allows for
interoperability across heterogeneous storage nodes.
Finally, the pNFS protocol is backward-compatible with
the base NFSv4.0 protocol. This allows interoperability
between old and new clients and servers.
Using the pNFS protocol, clients gather metadata, called
layouts, about how files are distributed across data servers.
Layouts are maintained internally by the pNFS server.
Once the client understands the file’s layout, it is able to
directly access the data servers in parallel. Unlike NFSv4.0
whereby a client accesses data via the NFS protocol from a
single NFS server, a pNFS client communicates with the
data servers using a variety of storage access protocols,
including NFSv4.0 and iSCSI/Fibre Channel using the
SCSI block command set or the new SCSI object command
set. The pNFS specification allows for the addition of new
layout distributions and storage access protocols. It also
provides significant flexibility in the implementation of the
back-end storage system.
The design of pNFS follows three main principles:

1) Familiar semantics
The pNFS protocol must provide consistency and
security semantics similar to the base NFSv4
protocol. This simplifies the adoption of pNFS by
the diverse set of existing NFS applications.

Ratan Deokar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1160-1163

www.ijcsit.com 1160

2) Simplicity
The pNFS extension must be kept simple, yet
efficient. The pNFS interface must provide the
most basic primitives needed to exploit data
parallelism efficiently, while allowing the layering
above of additional, more complex semantics.

3) Flexibility
The pNFS protocol must be flexible enough to
accommodate a variety of storage architectures.
These architectures include a federation of
standalone file servers, a mix of a NAS (network-
attached storage) file server and RAID storage
devices, and a fully transparent parallel clustered
file system. Architecturally, the components
include one metadata server, some number of data
servers, and some number of NFS clients.

B. Operating Environment and Design

Characteristics
The metadata server and the data servers of the pNFS used
for the purpose of this research are set up on Fedora
operating system (Fedora 20) using an Intel i5-4130
processor with 2.4 Ghz Clock speed.
The ALDM algorithm and related load calculation files are
developed using Shell script.

C. pNFS Configuration and Setup
Setting up pNFS is a challenging task and should not be
underestimated. The main concern with pNFS is that it has
not been fully commercialized. Hence, the available
versions are just prototypes. During pNFS setup and
configuration, care has to be taken that the pNFS utilities
are correctly configured.
Below 9 steps are involved in pNFS setup for the data
server:

1. Building the code
2. Blkmapd
3. Exporting the filesystem
4. Setting up the BLOCK storage / SAN
5. Export Options
6. Ctl
7. How to Start the server
8. Mount from the client
9. How to verify

Link given in reference section can be used to configure
and setup the pNFS server as well as client setup.
Configuring pNFS is very hectic job and that is why
following are the areas where care should be taken:

 First of all, have a backup of all the packages and
codes that you have written, beacause, there is a
possibility of losing the data as we need to deal
with kernel and operating system.

 While exporting the file system, the disk used on
data server must have some signature so gparted
tool is very handy. Here care should be taken that
the operating system partitions should not be
touched and overwritten (in case the system uses
two operating systems).

 To map different devices in the network, we need
ctl which will map the devices. Here, while

building the ctl, a lot of errors occur (if your
system isn't compatible). So care should be taken
that you have a compiler for compiling c source
code and above mentioned operating
system(Fedora).

II. LOAD EVALUATION

In distributed file systems, it is not possible to measure the
load of the system based on client requests because of
client cache. Clients can directly communicate with data
server and read and write data after accessing the metadata
information for the file rights. So accessing metadata
information can not reflect the system load. Accessing data
generates the load of data server, and it can also consume
resources on data servers, so the resources on
corresponding data server determine its service capabilities.
Thus, it is efficient to show the load through resource
utilization. The utilization of resources reflects the load of
data servers, however, it is difficult to compare different
computer system resources directly for different
characteristics of resources.

For any kind of resource utilization µi its Price Pi is

ܲሺߤሻ ൌ ܲ௫
ܭ
ఓ െ 1
ܭ െ 1

where Ki is the performance degradation caused by
resource utilization. The price of a resource is inversely
proportional to its utilization. Hence, higher the resource's
utilization, lower is its cost.

Load of the system is evaluated by calculating
three factors:

1. Network loading of data server
2. Disk I/O loading on the data server
3. Loading of data server adjusted by the

capacity
Network loading of the data server is defined as Ni

ܰሺ݊ሻ ൌ
ேܭ
 െ 1
ேܭ െ 1

where ni the utilization of network resources of the data
server, which is generated by the average network I/O
speed dividing the network speed of the full capacity in a
period.

Simply put, ni can be calculated as:

݊ ൌ
݀݁݁ܵ	ܱܫ	݇ݎݓݐ݁ܰ	݁݃ܽݎ݁ݒܣ

݀݁݁ܵ	݇ݎݓݐ݁ܰ	݈ܽݐܶ

Disk I/O loading on the data server is defined as Di

ሺ݀ሻܦ ൌ
ܭ
ௗ െ 1
ܭ െ 1

where di the disk utilization of data server, it is the average
disk utilization in a period of time.

Ratan Deokar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1160-1163

www.ijcsit.com 1161

Ci represents the loading of data server adjusted by the
capacity

ܥ ൌ
௨ܥ
ܥ

where Cu is the capacity used by data server, Ca is the data
server total disk capacity.

III. DESIGN OF ALDM

In distributed file systems, load of data server is generated
by receiving data requests. But the requests of the clients
are complex and changeable, and it is difficult to measure
the actual system loads directly through client requests.
When data server provides file system services, it needs to
consume its own resources. If system load is light, small
number of resources is consumed, so the remaining
resources can provide more services; if system’s load is
heavy, more resources are consumed, so there leaves little
ability to provide extra services. Therefore the usage
situation of data server resources can reveal the load status.
Load migration is done when the system is unbalanced.
Load migration occurs from an over loaded server to an
under loaded server. The traditional method of load
migration is using hot files. Hot files are the most
frequently accessed files. However, this method is not
completely reliable and thus we migrate load dynamically.
For hot-data based data migration, the total number of
access bytes of file divided by the file size is usually taken
as the cost/performance ratio, which assumes that the cost
of data migration is only constructed from the resources
consumed during migration, and the effect of migration is
determined by the access bytes of the migrated data. Doing
migration is to reach load balance; it is evident if we move
the same file to different data servers, it may generate
different load balance effects.
Different file sizes may lead to different effects when data
migration. In distributed file systems, the smallest unit of
data is stripe, and then is subfiles. When the migration unit
is stripe, it has small overhead and high efficiency, but it
needs additional metadata. When the migration unit is sub
files, the migration overhead is determined by the size of
subfiles, we only need to modify the corresponding data
server list stored in metadata. Therefore, we choose sub
files as the migration unit in the ALDM algorithm.
Load migration occurs when the value of the network
loading of data server or disk I/O loading on the data server
or capacity of loading of data server exceeds a threshold
value. The threshold values are set before hand and the
values that are dynamically computed are compared with
these preset values.

IV. ALDM IMPLEMENTATION

We balance system load by data migration, but the
traditional data migration is hot data migration. It is not the
best choice although it can bring some effect. In ALDM
algorithm, we dynamically select migration data to achieve
balanced load by using a quantitative method. In the design

of ALDM algorithm, the main goal is to balance the
network load, disk I/O load and disk capacity load.
The algorithm design is as follows:
1) By monitoring the parameters of the system resources

on the data server, we can get the load status of data
server. Supposing the network load of DSi is Ni, disk
I/O load is Di and disk capacity load is Ci; where the
values of Ni, Di , Ci are all in the range of (0, 1), which
reflect the corresponding resources usage of the data
server. If the value is small, it indicates that the used
data server resources are less, if the value is big, it
indicates that the used resources are much more.

2) After controlling node receiving the monitoring
information collected by data server, we can calculate
the data server's network load Ni, disk I/O load Di, and
disk capacity load Ci according to the responding
formulas. Besides, we can also calculate the value of
δN (network load standard deviation), δD (disk I/O load
standard deviation), δC (disk capacity load standard
deviation), respectively, and take them as the load
unbalance factor. ΨN represents the average of data
server network load:

Ψே ൌ
1
݊
 ܰ

ୀଵ

ΨD represents the average of data server network load:

Ψ ൌ
1
݊
ܦ

ୀଵ

ΨC represents the average of data server network load:

Ψ ൌ
1
݊
ܥ

ୀଵ

δN represents the unbalance factor of data server network
load:

ேߜ ൌ ඩ
1
݊
ሺ ܰ െ ߰ேሻଶ

ୀଵ

δD represents the unbalance factor of disk I/O load:

ߜ ൌ ඩ
1
݊
ሺܦ െ ߰ሻଶ

ୀଵ

δC represents the unbalance factor of disk capacity load:

ߜ ൌ ඩ
1
݊
ሺܥ െ ߰ሻଶ

ୀଵ

3) According to the type of load imbalance state, we can
select the type of data migration technique.

4) After selecting the type of migration, we can select the
source data server. The server with the maximum load
is selected as the source server.

5) Files are divided into hot files, warm files and cold
files due to their accessed frequency.

Ratan Deokar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1160-1163

www.ijcsit.com 1162

6) According to the source DS load and destination DS
load, we calculate the effect of load balance caused by
data migration of per unit data.

7) If the overhead of data migration is feasible with
respect to the load of the server, data is migrated from
the overloaded server (source DS) to the underloaded
server (destination DS).

V. METADATA MIGRATION

In traditional distributed systems, there is only one
metadata server. Metadata is nothing but data about data. In
particular, metadata server contains the file rights of all the
files contained in the block storage along with the pointers
to all those files. Metadata server monitors the access to the
files requested by the clients in Distributed File System.
The metadata server is the backbone of the parallel network
file system since it handles the requests of the clients and
directs them to the respective block storage. The metadata
server facilitates flexibility as the clients can directly access
the data from the block storage. In file systems upto
NFSv4.0, the data movement was handled by data servers.
Hence, data had to be moved from the block storage to the
data servers and from the data servers to the clients.
However, using a metadata server in NFSv4.1, data
movement is halved and block storage access is given
directly to the clients. This substantially reduces the data
movement and increases efficiency and speed of data
access.
However, no matter what kind of load balancing techniques
or file system architecture we use, if the backbone of the
system is overloaded, the entire sytem is a danger of going
down. Metadata sever is the backbone of NFSv4.1 or
pNFS. It handles all the requests by the all the clients at the
same time. As there is only one metadata server, the
question of what happens if the metadata server itself goes
down arises. Hence, it is vital to make sure that the
metadata server is not overloaded and if it does become
overloaded, necessary steps needs to be followed in order
to make sure that the entire system does not go down.

A. How Can a Metadata Server crash?
Following are the reasons why metadata server can
crash :

1) Metadata can crash when load of handling
requests becomes higher than what it can handle
without being overloaded. Hence, there arises a
need to migrate metadata.

2) If the processor of the metadta server is slow, it
will process requests slowly and the number of
incoming requests may exceed. Thus, the metadata
server queue will be filled with more requests than
it can handle.

B. Metadata Migration using ALDM
1) Select appropriate threshold values for network

load, disk I/O load and disk capacity which if
exceeded determines that the server is overloaded.

2) Determine values of network load (Ni), disk I/O
load (Di) and disk capacity load (Ci).

3) Compare the above values with the threshold
values.

4) If the values exceed the threshold values, migrate
the metadata to an underloaded server using a
sender initiated algorithm.

5) Perform steps (2) and (3) after a predetermined
time.

VI. CONCLUSION

Hence, the efficiency of a parallel network file system can
be improved by adaptive loading migration system.The
performance of the system can be increased by using the
mentioned load migration techniques. By migrating both
the data and the metadata, the chances of system failure is
substantially reduced. The system also gives a higher
throughput when the adaptive load migration technique is
used.

REFERENCES
[1] Zhipeng Tan, Wei Zhou, Dan Feng, and WenhuaZhang, ALDM:

Adaptive Loading Data Migration in Distributed File Systems, In
Proc. IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 6,
JUNE 2013.

[2] G. Zhang, L. Chiu, and L. Liu, Adaptive data migration in multitier
storage based cloud environment, in Proc. 2010 IEEE 3rd Int. Conf.
Cloud Computing. (CLOUD), pp. 78155.

[3] K. Dasgupta, S. Ghosal, and R. Jain, QoSMig: Adaptive rate
controlled migration of bulk data in storage systems data
engineering, in Proc. 21st Int. Conf., 2005, pp. 816827.

[4] S. Kang and A. L. Narasimha Reddy, User-centric data migration in
networked storage systems, in Proc. Parallel Distrib. Process. 2008,
pp. 112.

[5] J. M. Kunkel and T. Ludwig, Bottleneck detection in parallel file
systems with trace-based performance monitoring, in Proc. Parallel
Process. Lecture Notes in Comput. Sci., 2008, pp. 212221.

[6] A. Batsakis, R. Burns, and A. Kanevsky, CA-NFS: A congestion
aware network file system, in Proc. 7th USENIX Conf. File Storage
Technology.

[7] Frank Kargl, Jrn Maier, Stefan Schlott, Michael Weber Protecting
Web Servers from Distributed Denial of Service Attacks, in Proc.
ACM 1-58113- 348-0/01/0005

Ratan Deokar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1160-1163

www.ijcsit.com 1163

